We independently review everything we recommend. When you buy through our links, we may earn a commission. As an Amazon Associate we earn from qualifying purchases. Product information — including images, features, availability, and prices — is based on data available at the time the content was published. Learn more ›
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. Read more
Specification | Details |
---|---|
Publisher | Cambridge University Press |
Publication date | April 23, 2020 |
Edition | 1st |
Language | English |
Print length | 398 pages |
ISBN-10 | 110845514X |
ISBN-13 | 978-1108455145 |
Item Weight | 1.76 pounds |
Dimensions | 7 x 0.88 x 10 inches |
Part of series | Studies in Natural Language Processing |
© 2025 The GGI Project All rights reserved.